Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; 62(13): e202214875, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2269423

RESUMEN

Despite significant effort, a majority of heavy-atom-free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near-infrared (NIR) heavy-atom-free photosensitizers. Based on a series of thiopyrylium-based NIR-II (1000-1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron-rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)-domain, contributing to a ≈6-fold reduction in energy gap (ΔEST ), a ≈10-fold accelerated ISC process, and a ≈31.49-fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD-PEG2K lung-targeting dots enabled real-time NIR-II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Humanos , Fármacos Fotosensibilizantes/farmacología , Tiofenos
2.
Biomolecules ; 12(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2099331

RESUMEN

Rose Bengal (RB) is an anionic xanthene dye with multiple useful biological features, including photosensitization properties. RB was studied extensively as a photosensitizer, mostly for antibacterial and antitumor photodynamic therapy (PDT). The application of RB to virus inactivation is rather understudied, and no RB derivatives have been developed as antivirals. In this work, we used a synthetic approach based on a successful design of photosensitizing antivirals to produce RB derivatives for virus photoinactivation. A series of n-alkyl-substituted RB derivatives was synthesized and evaluated as antiviral photosensitizers. The compounds exhibited similar 1O2 generation rate and efficiency, but drastically different activities against SARS-CoV-2, CHIKV, and HIV; with comparable cytotoxicity for different cell lines. Submicromolar-to-subnanomolar activities and high selectivity indices were detected for compounds with C4-6 alkyl (SARS-CoV-2) and C6-8 alkyl (CHIKV) chains. Spectrophotometric assessment demonstrates low aqueous solubility for C8-10 congeners and a significant aggregation tendency for the C12 derivative, possibly influencing its antiviral efficacy. Initial evaluation of the synthesized compounds makes them promising for further study as viral inactivators for vaccine preparations.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Rosa Bengala , Humanos , Rosa Bengala/farmacología , Rosa Bengala/química , SARS-CoV-2 , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Antivirales/farmacología
3.
Viruses ; 14(10)2022 09 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2066543

RESUMEN

Curcumin, the bioactive compound of the spice Curcuma longa, has already been reported as a potential COVID-19 adjuvant treatment due to its immunomodulatory and anti-inflammatory properties. In this study, SARS-CoV-2 was challenged with curcumin; moreover, curcumin was also coupled with laser light at 445 nm in a photodynamic therapy approach. Curcumin at a concentration of 10 µM, delivered to the virus prior to inoculation on cell culture, inhibited SARS-CoV-2 replication (reduction >99%) in Vero E6 cells, possibly due to disruption of the virion structure, as observed using the RNase protection assay. However, curcumin was not effective as a prophylactic treatment on already-infected Vero E6 cells. Notably, when curcumin was employed as a photosensitizer and blue laser light at 445 nm was delivered to a mix of curcumin/virus prior to the inoculation on the cells, virus inactivation was observed (>99%) using doses of curcumin that were not antiviral by themselves. Photodynamic therapy employing crude curcumin can be suggested as an antiviral option against SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina , Chlorocebus aethiops , Animales , Humanos , SARS-CoV-2 , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Curcumina/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Células Vero , Antiinflamatorios/farmacología , Ribonucleasas/farmacología , Replicación Viral
4.
Viruses ; 14(5)2022 05 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1855824

RESUMEN

Bovine coronaviruses (BCoVs), which cause gastrointestinal and respiratory diseases in cattle, and are genetically related to the human coronavirus HCoV-OC43, which is responsible for up to 10% of common colds, attract increased attention. We applied the method of photodynamic inactivation with cationic photosensitizers (PSs) to reduce the titers of BCoV and studied the morphological structure of viral particles under various modes of photodynamic exposure. The samples of virus containing liquid with an initial virus titer of 5 Log10 TCID50/mL were incubated with methylene blue (MB) or octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) at concentrations of 1-5 µM for 10 min in the dark at room temperature. After incubation, samples were irradiated with LED (emission with maximum at 663 nm for MB or at 686 nm for Zn-PcChol8+) with light doses of 1.5 or 4 J/cm2. Next, the irradiation titrated virus containing liquid was studied using negative staining transmission electron microscopy. MB and Zn-PcChol8+ at concentrations of 1-5 µM, in combination with red light from LED sources in the low doses of 1.5-4.0 J/cm2, led to a decrease in BCoV titers by at least four orders of magnitude from the initial titer 5 Log10 TCID50/mL. Morphological changes in photodamaged BCoVs with increasing PS concentrations were loss of spikes, change in shape, decreased size of virus particles, destruction of the envelope, and complete disintegration of viruses. BCoV has been found to be sensitive to MB, which is the well-known approved drug, even in the absence of light.


Asunto(s)
Coronavirus Humano OC43 , Coronavirus Bovino , Animales , Cationes , Bovinos , Azul de Metileno , Fármacos Fotosensibilizantes/farmacología , Virión
5.
ACS Appl Mater Interfaces ; 14(3): 4456-4468, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1619771

RESUMEN

Coronavirus represents an inspiring model for designing drug delivery systems due to its unique infection machinery mechanism. Herein, we have developed a biomimetic viruslike nanocomplex, termed SDN, for improving cancer theranostics. SDN has a unique core-shell structure consisting of photosensitizer chlorin e6 (Ce6)-loaded nanostructured lipid carrier (CeNLC) (virus core)@poly(allylamine hydrochloride)-functionalized MnO2 nanoparticles (virus spike), generating a virus-mimicking nanocomplex. SDN not only prompted cellular uptake through rough-surface-mediated endocytosis but also achieved mitochondrial accumulation by the interaction of cationic spikes and the anionic mitochondrial surface, leading to mitochondria-specific photodynamic therapy. Meanwhile, SDN could even mediate oxygen generation to relieve tumor hypoxia and, consequently, improve macrophage-associated anticancer immune response. Importantly, SDN served as a robust magnetic resonance imaging (MRI) contrast agent due to the fast release of Mn2+ in the presence of intracellular redox components. We identified that SDN selectively accumulated in tumors and released Mn2+ to generate a 5.71-fold higher T1-MRI signal, allowing for effectively detecting suspected tumors. Particularly, SDN induced synergistic immunophotodynamic effects to eliminate malignant tumors with minimal adverse effects. Therefore, we present a novel biomimetic strategy for improving targeted theranostics, which has a wide range of potential biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/terapia , SARS-CoV-2/química , Biónica/métodos , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/farmacología , Medios de Contraste/química , Medios de Contraste/farmacología , Humanos , Inmunoterapia/métodos , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Neoplasias/inmunología , Óxidos/química , Óxidos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Poliaminas/química , Poliaminas/farmacología
6.
Viruses ; 14(1)2022 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1614009

RESUMEN

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Inactivación de Virus/efectos de los fármacos , Animales , Antivirales/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetinae , Emodina/farmacología , Emodina/efectos de la radiación , Humanos , Luz , Fármacos Fotosensibilizantes/efectos de la radiación , Extractos Vegetales/farmacología , Extractos Vegetales/efectos de la radiación , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Virión/efectos de los fármacos
7.
Photodiagnosis Photodyn Ther ; 37: 102642, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1550023

RESUMEN

The local antiviral photodynamic inactivation (PDI) may prove to be a helpful tool reducing the viral load in the nose and throat area in the early phase of a Covid19 infection. Both the infectivity and the prognosis of SARS-CoV-2 infections in the early phase can depend on the viral load in this area. The aim of our study was to find a simplified PDI therapy option against corona viruses in this region with low dose methylene blue (MB) as photosensitizer and use of LED light instead of laser. As a substitute for SARS-CoV2 viruses we started with BCoV infected U373 cells first. We used an 810nm diode laser with 300mW/cm2 and 100J/cm2 light dose as well as a 590 nm LED and a broadband LED with irradiation intensity of 10,000 lx each (irradiation time 2.5 and 10 min) and concentrations of the sensitizer of 0.001% and 0.0001%. The 0.001% MB sensitizer experiments showed similar results with all exposures. The logarithmic reduction factor varied between ≥ 5.29 and ≥ 5.31, (0.001% MB sensitizer) and ≥ 4.6 and ≥ 5.31 (0.0001% MB) respectively. Extending the LED irradiation time from 2 to 5 and 10 minutes did not change these results. In contrast approaches of BCoV-infected cells in the dark, treated with 0.001% and 0.0001% MB sensitizer alone, a lot of residual viruses could be detected after 10 minutes of incubation (RF 0.9 and RF 1.23 for 0.001% MB and 0.0001% MB respectively) In our SARS-CoV-2 experiments with VERO E6 infected cells the irradiation time was reduced to 1, 2 and 3 minutes for both concentrations with increasing broadband LED radiation intensity from 20 to 50 and 100.000 lx. (RF 4.67 for 0.001% and 0.0001% respectively). This showed a minimum concentration of 0.0001%MB and a minimum radiation intensity of 20,000 lx leads to a 99.99% reduction of intracellular and extracellular viruses after one minute exposure.


Asunto(s)
COVID-19 , Fotoquimioterapia , Humanos , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , ARN Viral , SARS-CoV-2
8.
Photochem Photobiol Sci ; 20(11): 1497-1545, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1491552

RESUMEN

Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Farmacorresistencia Microbiana/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Hongos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología
9.
J Am Chem Soc ; 143(43): 17891-17909, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1483091

RESUMEN

The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.


Asunto(s)
Antiinfecciosos/química , Diseño de Fármacos , Fototerapia/métodos , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Colorantes/química , Colorantes/farmacología , Equipos y Suministros/microbiología , Equipos y Suministros/virología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/patología , Hongos/efectos de los fármacos , Grafito/química , Luz , Nanopartículas/química , Nanopartículas/toxicidad , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Teoría Cuántica , Especies Reactivas de Oxígeno/metabolismo , Virus/efectos de los fármacos
10.
Sci Rep ; 11(1): 19029, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1437689

RESUMEN

The SARS-CoV-2 pandemic has highlighted the weaknesses of relying on single-use mask and respirator personal protective equipment (PPE) and the global supply chain that supports this market. There have been no major innovations in filter technology for PPE in the past two decades. Non-woven textiles used for filtering PPE are single-use products in the healthcare environment; use and protection is focused on preventing infection from airborne or aerosolized pathogens such as Influenza A virus or SARS-CoV-2. Recently, C-H bond activation under mild and controllable conditions was reported for crosslinking commodity aliphatic polymers such as polyethylene and polypropylene. Significantly, these are the same types of polymers used in PPE filtration systems. In this report, we take advantage of this C-H insertion method to covalently attach a photosensitizing zinc-porphyrin to the surface of a melt-blow non-woven textile filter material. With the photosensitizer covalently attached to the surface of the textile, illumination with visible light was expected to produce oxidizing 1O2/ROS at the surface of the material that would result in pathogen inactivation. The filter was tested for its ability to inactivate Influenza A virus, an enveloped RNA virus similar to SARS-CoV-2, over a period of four hours with illumination of high intensity visible light. The photosensitizer-functionalized polypropylene filter inactivated our model virus by 99.99% in comparison to a control.


Asunto(s)
COVID-19/virología , Diazometano/química , Luz , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Polipropilenos/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/efectos de la radiación
11.
ACS Nano ; 15(8): 13857-13870, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1327187

RESUMEN

Personal protective equipment (PPE) is vital for the prevention and control of SARS-CoV-2. However, conventional PPEs lack virucidal capabilities and arbitrarily discarding used PPEs may cause a high risk for cross-contamination and environmental pollution. Recently reported photothermal or photodynamic-mediated self-sterilizing masks show bactericidal-virucidal abilities but have some inherent disadvantages, such as generating unbearable heat during the photothermal process or requiring additional ultraviolet light irradiation to inactivate pathogens, which limit their practical applications. Here, we report the fabrication of a series of fabrics (derived from various PPEs) with real-time self-antiviral capabilities, on the basis of a highly efficient aggregation-induced emission photosensitizer (namely, ASCP-TPA). ASCP-TPA possesses facile synthesis, excellent biocompatibility, and extremely high reactive oxygen species generation capacity, which significantly outperforms the traditional photosensitizers. Meanwhile, the ASCP-TPA-attached fabrics (ATaFs) show tremendous photodynamic inactivation effects against MHV-A59, a surrogate coronavirus of SARS-CoV-2. Upon ultralow-power white light irradiation (3.0 mW cm-2), >99.999% virions (5 log) on the ATaFs are eliminated within 10 min. Such ultralow-power requirement and rapid virus-killing ability enable ATaFs-based PPEs to provide real-time protection for the wearers under indoor light irradiation. ATaFs' virucidal abilities are retained after 100 washings or continuous exposure to office light for 2 weeks, which offers the benefits of reusability and long-term usability. Furthermore, ATaFs show no toxicity to normal skin, even upon continuous high-power light illumination. This self-antiviral ATaFs-based strategy may also be applied to fight against other airborne pathogens and holds huge potential to alleviate global PPE supply shortages.


Asunto(s)
COVID-19 , Equipo de Protección Personal , Humanos , Fármacos Fotosensibilizantes/farmacología , SARS-CoV-2 , Antivirales , COVID-19/prevención & control
13.
Small ; 17(30): e2101770, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1287404

RESUMEN

COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in global social and economic disruption, putting the world economy to the largest global recession since the Great Depression. To control the spread of COVID-19, cutting off the transmission route is a critical step. In this work, the efficient inactivation of human coronavirus with photodynamic therapy (PDT) by employing photosensitizers with aggregation-induced emission characteristics (DTTPB) is reported. DTTPB is designed to bear a hydrophilic head and two hydrophobic tails, mimicking the structure of phospholipids on biological membranes. DTTPB demonstrates a broad absorption band covering the whole visible light range and high molar absorptivity, as well as excellent reactive oxygen species sensitizing ability, making it an excellent candidate for PDT. Besides, DTTPB can target membrane structure, and bind to the envelope of human coronaviruses. Upon light irradiation, DTTPB demonstrates highly effective antiviral behavior: human coronavirus treated with DTTPB and white-light irradiation can be efficiently inactivated with complete loss of infectivity, as revealed by the significant decrease of virus RNA and proteins in host cells. Thus, DTTPB sensitized PDT can efficiently prevent the infection and the spread of human coronavirus, which provides a new avenue for photodynamic combating of COVID-19.


Asunto(s)
COVID-19 , Fotoquimioterapia , Humanos , Pandemias , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , SARS-CoV-2
15.
Photodiagnosis Photodyn Ther ; 34: 102324, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1219122

RESUMEN

BACKGROUND: SARS-CoV-2 attacks hemoglobin through its structural protein ORF3a, dissociating the iron from the heme, as iron is necessary by cell machinery for virus replication. In this process protoporphyrin (PpIX) is released. METHODS: The decrease in the hemoglobin levels observed in patients with Covid-19 is frequently accompanied by an increase in PpIX levels. This evidence was confirmed by the quantification of PpIX by high-performance liquid chromatography (HPLC). PpIX emission is observed in its two characteristic bands at approximately 635 nm and 705 nm. RESULTS: This paper searches to understand the role of heme and PpIX inside the cells. Perspectives on the use of PpIX fluorescence as a sensor to monitor the presence of SARS-CoV-2 in the tissue, blood, urine, or feces to map the evolution and severity of the disease or to monitor the response of the Covid-19 treatment modalities were described. CONCLUSION: Fluorescence spectroscopy could be adopted as an excellent diagnostic technique for Covid-19, of low cost and high sensitivity. This method can potentially be used as a marker to monitor the response to the treatments. Photodynamic and sonodynamic therapies using the endogenous PpIX increased in the acute phase of the disease, could be employed for Covid-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Fotoquimioterapia , Ácido Aminolevulínico , Hemoglobinas , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Protoporfirinas , SARS-CoV-2
17.
Photodiagnosis Photodyn Ther ; 34: 102286, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1171227

RESUMEN

BACKGROUND: In this study, the ability of antimicrobial photodynamic therapy (aPDT) as a treatment approach and adjuvant therapy using curcumin-poly (lactic-co-glycolic acid) nanoparticles (Cur@PLGA-NPs) to inactivate Coronavirus disease 2019 (COVID-19) in plasma was investigated. Furthermore, to verify whether the quality requirement of aPDT-treated plasma is acceptable, the differences of the levels of clotting factors, total plasma proteins, and anti-A and/or anti-B antibodies titrations in plasma of patient before and after aPDT treatment were investigated. MATERIALS AND METHODS: Cur@PLGA-NPs was synthesized using Electrospinning process and characterized by different analysis including Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Fourier Transform Infrared (FTIR) spectroscopy assays. The presence of the SARS-CoV-2 in the plasma samples of patients suspected of having COVID-19 was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. Then, the treated plasma samples with Cur@PLGA-NPs plus blue laser were exposed to Vero cells. Eventually, cell cytotoxicity and apoptotic effects of treated Vero cells were evaluated. Levels of clotting factors including prothrombin time (PT) and activated partial thromboplastin time (APTT), total plasma proteins, and anti-A and/or anti-B antibodies measurements were performed using the coagulometer, method of Bradford, and titration procedure, respectively. RESULTS: The presence of SARS-CoV-2 was positive in 84.3 % of samples. Different concentrations of Cur@PLGA-NPs (3, 5, 7, and 10 % wt.), the irradiation times of blue laser (1, 3, and 5 min), and aPDT with the maximum dosed of blue laser light (522.8 J/cm2) plus 10 % wt. Cur@PLGA-NPs had no cytotoxicity. Although there were significant cell degradation and apoptotic effects in treated Vero cells with treated plasma using 10 % wt. Cur@PLGA-NPs, and a blue laser at an energy density of 522.8 J/cm2, no visible changes in cells and apoptosis were observed following aPDT. Total plasma protein content, PT, APTT, and anti-A and/or anti-B antibodies titers showed no significant changes (P > 0.05 for all comparisons) in treated plasma as compared to untreated plasma. CONCLUSION: aPDT exhibited in vitro anti-COVID-19 activities in the treated plasma containing SARS-COV-2 without Vero cell apoptosis and any adverse effects on plasma quality in aPDT-exposed plasma.


Asunto(s)
COVID-19 , Curcumina , Nanopartículas , Fotoquimioterapia , Animales , Antibacterianos , Línea Celular , Chlorocebus aethiops , Curcumina/farmacología , Glicolatos , Glicoles , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , SARS-CoV-2 , Células Vero
18.
Photodiagnosis Photodyn Ther ; 33: 102112, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1137557

RESUMEN

INTRODUCTION: Recently, the COVID-19 pandemic has spread globally, necessitating the development of new methods for its prevention and treatment. The purpose of this study was to evaluate the antiviral activity of photodynamic therapy (PDT) against SARS-CoV-2 in vitro. METHODS: Vero E6 cells and SARS-CoV-2 isolated in Russia were used for PDT with methylene blue (MB) and Radachlorin. A continuous laser with wavelength λ = 662 nm in doses of 16 J/cm2 and 40 J/cm2 laser irradiation was used for PDT of a viral suspension and SARS-CoV-2-infected cells. The direct cytopathogenic effect of SARS-CoV-2 was evaluated via light microscopy to calculate the TCID50 in the samples and perform statistical analysis. RESULTS: Viral suspensions of SARS-CoV-2 that had a TCID50 greater than 103 were inactivated by PDT in the presence of MB and Radachlorin. Vero E6 cells were protected from 104 TCID50 of SARS-CoV-2 by PDT post infection. The range of protective concentrations was 1.0-10.0 µg/ml and 0.5-5.0 µg/ml for MB and Radachlorin, respectively. Additionally, it was found that MB and Radachlorin also possess significant antiviral activity even without PDT. The 50 % inhibitory concentration (IC50) against 102 TCID50 of SARS-CoV-2 was found to be 0.22 and 0.33 µg/mL with the addition of MB and Radachlorin, respectively, to cells concomitantly with virus, whereas in the case of applying the photosensitizers at 3.5 h post infection, the IC50 was 0.6 and 2.0 µg/mL for MB and Radachlorin, respectively. CONCLUSION: PDT shows high antiviral activity against SARS-CoV-2 when combined with MB and Radachlorin in vitro.


Asunto(s)
Azul de Metileno/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Técnicas Microbiológicas , Porfirinas , Células Vero
19.
Molecules ; 25(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: covidwho-803884

RESUMEN

The problem of treating viral infections is extremely relevant due to both the emergence of new viral diseases and to the low effectiveness of existing approaches to the treatment of known viral infections. This review focuses on the application of porphyrin, chlorin, and phthalocyanine series for combating viral infections by chemical and photochemical inactivation methods. The purpose of this review paper is to summarize the main approaches developed to date in the chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogues and to analyze and discuss the information on viral targets and antiviral activity of porphyrins, chlorins, of their conjugates with organic/inorganic compounds obtained in the last 10-15 years in order to identify the most promising areas.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Fotoquimioterapia/métodos , Neumonía Viral/tratamiento farmacológico , Porfirinas/farmacología , Antivirales/química , COVID-19 , Humanos , Indoles/química , Indoles/farmacología , Isoindoles , Pandemias , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , SARS-CoV-2 , Acoplamiento Viral/efectos de los fármacos
20.
ACS Appl Mater Interfaces ; 13(1): 155-163, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: covidwho-997777

RESUMEN

A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.


Asunto(s)
COVID-19/virología , Fármacos Fotosensibilizantes/farmacología , Polímeros/farmacología , COVID-19/prevención & control , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Humanos , Enfermedad Iatrogénica/prevención & control , Luz , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Microfibrillas/química , Pandemias , Fármacos Fotosensibilizantes/química , Polímeros/química , Porfirinas/química , Porfirinas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Oxígeno Singlete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA